
25 Most Dangerous Software
Weaknesses
Pete Freitag, Foundeo Inc.

About Me
Pete Freitag

• 25+ Years ColdFusion Experience

• Company: Foundeo Inc.

• Products: FuseGuard, HackMyCF, Fixinator

• Consulting: Code Reviews, Server Review, CFML Security Training

• You might also know me from:

• Lockdown Guides CF9 - CF2025

• CFDocs.org, cfscript.me, cfbreak.com

• blog: petefreitag.com

• twitter/github: @pfreitag

http://CFDocs.org
http://cfscript.me
http://cfbreak.com

CWE Top 25

Source: https://cwe.mitre.org/top25/archive/2024/2024_cwe_top25.html

•CVE's published between June 2023 -
June 2024

•31,770 CVE's!

•Ranking Factors:

•Frequency

•Severity

•Danger

https://cwe.mitre.org/top25/archive/2024/2024_cwe_top25.html

Trends of the CWE Top 25

Source: https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html

https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html

"On the Cusp" 2024 List

Over 900 CWE's

• Some are very similar (as we'll see)

• Some are more specific cases of others (child of)

#25 - Missing Authentication for Critical Function
CWE-306

• Authentication = User is who they attest to be

• Authorization = User has permission to perform action

• Without Authentication you cannot have Authorization

• Tips: Check for authentication in Application.cfc/cfm or use a framework

• Check your app to make sure it requires authentication where it should. For
bonus points automate this check in unit / integration tests.

Do This Avoid This

• Use Application.cfc OnRequestStart or OnRequest

• Frameworks

• Application.cfm

<cfinclude template="auth.cfm">

On top of every file

component {

 function onRequestStart() {
checkAuth();

 }

}

#24 Uncontrolled Resource Consumption
CWE-400

• Denial of Service

• Check Queries

• Use LIMIT / TOP on Queries

• Check Loops

• Add a maximum iteration when looping over an untrusted input

• HashDOS - make sure post parameter limit is not set too high in CF Admin

#23 - Integer Overflow or Wraparound
CWE-190

• Max value of a 32 bit unsigned integer is 4,294,967,295

• What happens when you add 1?

• In MySQL < 5.5.5 it silently wraps around to 0

#22 - Use of Hard-coded Credentials
CWE-798

• API Keys / Passwords in Code

• Embedded / Hard Coded Certificates

#22 - Hard Coded Credentials
Avoiding Hard Coded Credentials

• Environment Variables

• Docker Secrets

• Secure Key Store Services:

• Self Hosted: Hashicorp Vault

• AWS: EC2 Parameter Store, KMS, Secrets Manager

• Azure: Key Vault

• GCP: Key Vault, Secret Manager

#21 - NULL Pointer
Dereference
CWE-476

Thanks Java

“Java is said to be memory-
safe because its runtime error
detection checks array bounds

and pointer dereferences.”
Source: https://en.wikipedia.org/wiki/Memory_safety

CWE-119

#20 Improper Restriction of Operations
within the Bounds of a Memory Buffer

https://en.wikipedia.org/wiki/Memory_safety

#19 - Server-Side Request Forgery (SSRF)
CWE-918

• SSRF Happens When your server makes a HTTP request to an arbitrary URL

• Can allow attacker to hit other http services behind the firewall (dbs, caches)

• Cloud Metadata APIs (eg: 169.254.169.254) can leak access keys or other
sensitive info:

• Tip: on AWS Disable IMDSv1 and use IMDSv2 instead

#19 - SSRF
Some Functions / Tags That Can Request a URL

• cfhttp

• PDF: cfdocument / cfhtmltopdf (within HTML: img, iframe, etc)

• Images: isImageFile

• XML: XmlParse, XmlSearch, XmlValidate

• Additional List: https://hoyahaxa.blogspot.com/2021/04/ssrf-in-
coldfusioncfml-tags-and.html

https://hoyahaxa.blogspot.com/2021/04/ssrf-in-coldfusioncfml-tags-and.html
https://hoyahaxa.blogspot.com/2021/04/ssrf-in-coldfusioncfml-tags-and.html
https://hoyahaxa.blogspot.com/2021/04/ssrf-in-coldfusioncfml-tags-and.html

#18 - Incorrect Authorization
CWE-863

• Authorization checks exist, but are not functioning properly

//make sure they are an admin
if (isLoggedIn() || isAdmin()) {

doAdiminStuff();
}

#17 - Exposure of Sensitive Info to Unauthorized Actor
CWE-200

• Disclosing which email addresses are valid on login requests.

• Disclosing Error Details

• Use onError in Application.cfc, set global error handler

#16 - Deserialization of Untrusted Data
CWE-502

• Java Deserialization Vulnerabilities

• Has the ability to cause remote code execution if malicious content is
added to the serialized class.

• Avoid Untrusted Input to ColdFusion’s Deserialize Function

• Block the flash remoting endpoints on older CF

• JSON Deserialization - Consider Validating JSON with a JSON schema first

#15 - Improper Privilege Management
CWE-269

• Similar to #18 (CWE-863) Incorrect Authorization

#14 - Improper Authentication
CWE-287

• So many ways Authentication can go wrong…

• Weak Passwords, Credential Stuffing, Weak Session Cookie Config

• Use SSO

• Most orgs now have the ability a SSO provider, either through
ActiveDirectory, Google Apps, Okta, etc.

• You can use SAML to integrate with the identity provider in your ColdFusion
Apps. SAML Features added to CF2021

CWE-77 Improper Neutralization of Special Elements used in a Command

• Take care when using cfexecute, or other APIs that may wrap a native
command

<cfexecute name="c:\bin\tool.exe" arguments="-n #url.n#">

#13 - Command Injection

#12 - Improper Input Validation
CWE-20

• This is a catch all CWE

• Almost all vulnerabilities are caused by failing to validate an input!

• TLDR: Add validation, improve security

#11 - Improper Control of Generation of Code
CWE-94 Code Injection

• A few different ways this can happen in CFML, most common:

• Evaluate

• IIF

• cfinclude

#11 Fixing RCE
Replace IIF with Ternary Operator

<cfset greet = iif(len(name), de("Hi #name#"), de("Hi"))>

<cfset greet = (len(name)) ? "Hi #name#" : "Hi">

#11 Fixing RCE
Fixing Evaluate

evaluate("url.#name#")

url[name]

Rid your code of evaluate() - terrible for both performance and security

#11 Fixing RCE
Fixing Evaluate

#evaluate("x+y")#

#x+y#

Rid your code of evaluate() - terrible for both performance and security

#11 RCE
Good News / Bad News

• Good News

• Easy to find

• Easy to fix

• Bad News

• Very Dangerous

• Might have a lot if your code was written early 2000’s

#10 - Unsafe File Uploads
CWE-434 Unrestricted Upload of File with Dangerous Type

• Regularly review all your file upload code, and make sure that it:

• Always checks the file extensions of uploaded files against a list of allowed
extensions. Use the allowedExtensions attribute of cffile.

• Does not upload directly under the web root (at least before validation)

• Don’t rely on mime type checks alone, they can be bypassed!

• Set this.blockedExtForFileUpload to full list of executable
extensions.

#9 - Missing Authorization
CWE-862

• Does your code check that the user is allowed to perform the requested
function?

• IDOR: Insecure Direct Object Reference: document.cfm?id=123

• Sounds simple but these types of issues fall under the radar, because “it
works”

• Need to test that it “doesn’t work” for X role

• No easy way to do this, but you can write tests

CWE-22 Improper Limitation of a Pathname to a Restricted Directory

• Path Traversal can happen whenever you construct a file path with unsafe
variables.

• Example: <cfinclude template="html/#url.name#">

#8 - Path Traversal

#8 - Use After Free
CWE-416 Thanks Java

CWE-78 - Improper Neutralization of Special Elements used in an OS Command

• Similar / Child of to #13, CWE-77

• Command vs OS Command

• Same Protections Apply

#7 - OS Command Injection

#5 - Out-of-bounds
Read
CWE-125 Thanks Java

#4 - Cross-Site Request Forgery (CSRF)
CWE-352

• Causing a request to be made by an authenticated and authorized user’s
browser to perform an unwanted action.

#9 - CSRF
Best Example

• Netflix in 2006 - Remember when they rented DVDs?

• To Add a Movie to your Queue:

• Request to: http://www.netflix.com/AddToQueue

• Pass a movie id: movieid=70011204

#9 CSRF
Netflix Example

Step 1: Create a Web Page With The Following img tag:

Step 2: Get People to Visit the Page

Step 3: Millions of people added Sponge Bob Square Pants the Movie to their Queue

#4 CSRF
Fixing CSRF

• SameSite Cookies

• Check HTTP Method (eg: require POST)

• CAPTCHAs - Helpful but causes usability issues / AI

• Inspect Sec-Fetch and Origin Request Headers

• Use a CSRF Token

• CFML Functions: CSRFGenerateToken() and CSRFVerifyToken()

#4 CSRF
Fixing CSRF Sec-Fetch Headers (Modern Browsers)

GET /AddToQueue?movieid=70011204
Host: www.netflix.com
Sec-Fetch-Dest: image
Sec-Fetch-Site: cross-site
Sec-Fetch-Mode: no-cors

HTTP Request

http://www.netflix.com

#3 - Improper Neutralization of Special Elements used in an SQL Command

CWE-89 SQL Injection

• Classic Example:

<cfquery>
 SELECT story
 FROM news
 WHERE id = #url.id#
</cfquery>

#3 SQL Injection
Fixing SQL Injection

• Use cfqueryparam

<cfquery>
 SELECT story
 FROM news
 WHERE id = <cfqueryparam value=“#url.id#”>
</cfquery>

#3 SQL Injection
With queryExecute

queryExecute("SELECT story
FROM news
WHERE id = #url.id#”);

queryExecute("SELECT story
FROM news
WHERE id = :id”, {id=url.id});

#3 - SQL Injection
When Parameters Don’t Work

• Places that parameters may (depending on DB) not work:

• ORDER BY clause

• SELECT TOP n

• LIMIT / OFFSET

• Validate!

• Use SELECT TOP #int(url.n)#

• Use cfqueryparam whenever you can

#3 - SQL Injection
Fixing SQL Injection

• Fixinator can scan
your code and fix
certain
vulnerabilities

#2 - Out-of-bounds
Write
CWE-787 Thanks Java

Any Guesses?

#1

#1 XSS
Improper Neutralization of Input During Web Page Generation

CWE-79 Cross-site Scripting / XSS

#1 - XSS - Vulnerable Code Example

<cfoutput>Hello #url.name#</cfquery>

#1 - Fixing XSS
Encoder Methods

<cfoutput>Hello #encodeForHTML(url.name)#</cfquery>

<cfoutput encodefor="html">Hello #url.name#</cfquery>

#1 Fixing XSS
Picking the correct encoder

Context Method

HTML encodeForHTML(variable)

HTML Attribute encodeForHTMLAttribute(variable)

JavaScript encodeForJavaScript(variable)

CSS encodeForCSS(variable)

URL encodeForURL(variable)

Learn More

• ColdFusion Security Guide

• https://foundeo.com/security/guide/

• Ask Me

• Resources: OWASP, CWE Site

https://foundeo.com/security/guide/

Thank You!

pete@foundeo.com

Weekly CFML Community Newsletter: cfbreak.com

http://cfbreak.com

